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Abstract. We present the implementation of a fast real-space algorithm for density functional calculations
for atomic nanoclusters. The numerical method is based on a fourth-order operator splitting technique
for the solution of the Kohn-Sham equation [1]. The convergence of the procedure is about one order
of magnitude better than that of previously used second-order operator factorizations. The method has
now been extended to deal with non-local pseudopotentials of the Kleinman-Bylander [2] type, permitting
calculations for realistic systems, without significantly degrading the convergence rate. We demonstrate
the convergence of the method for the examples C and C60 and present examples of structure calculations
of Na and Mg clusters.

PACS. 71.15.Mb Density functional theory, local density approximation, gradient and other corrections –
61.46.Bc Clusters

1 Introduction: operator factorization

Real space methods where the Kohn-Sham wave func-
tions, densities, and potentials are represented on a grid
in coordinate space are rapidly gaining popularity [3]. Key
to the applicability of the method is a fast and accu-
rate solver for the Kohn-Sham equation. A powerful strat-
egy is to apply the diffusion operator T (ε) = e−εH on a
set of trial wave functions {ψi} , i = 1 . . . n. After each
step, the wave functions are orthonormalized; the process
then converges towards the n lowest eigenfunctions of the
Hamiltonian.

The diffusion operator T (ε) can not be calculated ex-
actly; we have recently [4] demonstrated that fourth order
factorizations [5,6] of the diffusion operator T (ε) = e−εH

can be used very effectively for local Hamiltonians Hloc =
T + V . One possible factorization is
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ε
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is an auxiliary, positive, local potential.
Local Hamiltonians are unfortunately insufficient for a

quantitative description of many realistic systems; for ex-
ample, the interaction of the valence electrons with the ion
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cores depends on energy and angular momentum. Thus,
the Hamiltonian will normally have the form

H = T + Vloc + Vnl. (3)

Using the Kleinman-Bylander [2] separable form of the
ionic pseudopotentials, the non-local part of the Hamilto-
nian reads
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In the above equation, A(i)
� are numerical constants char-

acterizing the pseudopotential, and the P (i)
�m are projec-

tors defined as P (i)
�m = R

(i)
� (r)Y�m, where R�(r) is a radial

function, and Y�m are spherical harmonics; the Ri are the
positions of the ions, and the superscript (i) indicates that
the A(i)

� , P (i)
�m and R

(i)
� depend on the chemical species of

atom i . The range of the non-local pseudopotential ex-
tends only up to a distance r(i)c from each atomic posi-
tion Ri. Normally the core radii r(i)c are chosen such that
there is no overlap between the different core spheres.

To implement non-local potentials, the factorization
is best carried out recursively. The computationally most
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efficient form is

e−εH = e−
ε
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where Hloc = T + Vloc, and Ṽnl is defined analogously to
equation (2),

Ṽnl = Vnl +
ε2

48
[Vnl, [Hloc, Vnl]] . (6)

The factors containing Hloc in the exponent are in turn
factorized in terms of T and Vloc as indicated by equa-
tion (1). The double commutator [Vnl, [Hloc, Vnl]] has a
projector structure similar to the pseudopotential itself;
its exponential can therefore also be evaluated easily and
exactly.

Since the factorized form of the diffusion operator is
not exact, the eigenvalue/eigenfunction pairs acquire a de-
pendence on the imaginary time step ε, their exact value
being obtained in the limit ε → 0. On the other hand,
the larger ε is, the faster the convergence will be. It is
therefore desirable to have an approximation of the diffu-
sion operator that is accurate for large values of ε. This is
exactly where the fourth order factorizations are useful.

2 Numerical tests

The purpose of this section is to demonstrate the func-
tionality of the fourth order factorization for real-space
electronic structure calculations involving non-local pseu-
dopotentials. We have chosen four different cases, namely,
an isolated carbon atom, the diatomic molecule CO, the
medium-size C6H6 benzene molecule, and the relatively
large C60 cluster. These different cases allow us to probe
different aspects of the method, as discussed below. Tests
of the efficiency of the second and fourth order eigensolvers
have been performed as follows: we have first solved the
Kohn-Sham equations, taking the Perdew-Wang density
functional [7] and employing Troullier-Martins [8] pseu-
dopotentials generated by the program FHI98PP [9]. We
have used projector functions for the � = 0, 1, 2 angular
momentum channels, where the � = 2 projector was taken
as the local potential. The cutoff radii have been 1.37a0 for
the oxygen ion, and 1.46a0 for carbon. The orthogonaliza-
tion and the density update were performed as described
in reference [4]. We have then taken the electron density
and the corresponding Kohn-Sham potential as a fixed lo-
cal field and have solved again the eigenvalue problem,
taking as initial guess for the evolution the wave func-
tions of a particle in a box, and repeating the process for
a sequence of time steps ε.

Figures 1 and 2 show the convergence of the lowest
eigenvalue of a single C atom and a C60 cluster as a func-
tion of the time step for both a second order and a fourth
order calculation. The isolated C atom is spherically sym-
metric, we can observe precise second or fourth order con-
vergence over two and a half orders of magnitude of the
time step, down to relative accuracies of 10−7. It is useful
to note that the ultimate accuracy of eigenvalues ei(ε) is
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Fig. 1. The figure shows the relative error of the lowest eigen-
value of electrons in a single C atom on a double-logarithmic
scale for the second and the fourth order algorithm. Also shown
are the functions ε2 and ε4 to verify the power-law convergence.
A cubic grid of 483 mesh points has been used for the calcula-
tion, with a resolution of h = 0.3a0.
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Fig. 2. Same as Figure 1 for a C60 molecule. A cubic grid
of 643 mesh points has been used for the calculation, with a
resolution of h = 0.4a0.

approximately given by the total evolved time τ = Nε,
where N is the number of iterations. The necessary evo-
lution time τ to reach a certain accuracy is characteristic
of the system, but depends only weakly on the particular
algorithm used and on the value of ε. Therefore, the hor-
izontal distance between the two curves at a given error
yields a direct estimate for the relative number of itera-
tions between a second order and a fourth order factor-
ization needed to obtain a given accuracy and, hence, the
speed advantage of the fourth order over the second order
method.

For the C60 cluster we see a deviation from the fourth
order convergence at accuracies better than 10−6. This
comes from an approximate evaluation of the double com-
mutator term [Vnl [Hloc, Vnl]] where we have assumed, for
simplicity, that the local potential in the vicinity of the
individual carbon atoms is spherically symmetric. This
approximation simplifies the numerical treatment enor-
mously; it does not affect the final result and, as seen in
Figure 2, affects the convergence only when a very good
absolute accuracy has already been reached. We conclude
this section by noting that the convergence features of
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Table 1. CO equilibrium distances d0 and harmonic vibra-
tional frequencies ν obtained from a quadratic fit to the CO
binding energy in the range [2.06 : 2.20]. h is the grid resolu-
tion in units of the Bohr radius, and N is the number of grid
points in each direction. The entry labeled with ABINIT was
obtained with the ABINIT code [10].

d0 [a0] ν [cm−1 ]
h = 0.2 N = 64, unfiltered 2.12185 2117
h = 0.2 N = 64, filtered 2.12180 2119
h = 0.4 N = 48, unfiltered 2.10555 2299
h = 0.4 N = 48, filtered 2.10726 2153
h = 0.6 N = 32, filtered 2.13422 2036

ABINIT 2.113 2149

other molecules and higher lying states are basically the
same.

To assess the numerical accuracy of our code, we have
calculated the bond length and the vibrational frequency
of a CO molecule as a function of discretization and grid
size and compared these results with results from the
ABINIT code [10]. Table 1 collects the equilibrium dis-
tances d0 and harmonic vibrational frequencies ν for the
CO molecule for different discretizations. To retain nu-
merical accuracy even for rather coarse grids, we used a
filtering method of Ono and Hirose [11]. The equilibrium
distances for all acceptable calculations agree within bet-
ter than 0.5 percent. The uncertainty of the vibrational
frequency is somewhat larger, the h = 0.6a0 result is 4 per-
cent below the best value whereas the filtered h = 0.4a0

result is 2 percent below the best value. We conclude that
even a rather coarse mesh can lead, when used with suffi-
cient care, to very good results — note that the calculation
for the h = 0.6a0 resolution is about thirty times faster
than the best calculation. A more detailled description of
the method and its convergence rate will be given else-
where [12].

3 Applications: Na and Mg clusters

We have performed extensive calculations on the energet-
ics and structure of neutral and charged Na and Mg clus-
ters of up to 10 atoms, using pseudopotentials constructed
by Fiolhas et al. [13] and Kümmel et al. [14]. Equilibrium
configurations were found, starting from random config-
urations, by simulated annealing utilizing first Langevin
and close to the equilibrium configuration damped Verlet
moves. The calculations were repeated several times to
find isomers. As an example we show the equilibrium
structure of a Na5 and a Mg9 cluster in Figures 3 and 4.

Our calculated bond lengths differ from the theoreti-
cal values of Moullet et al. [15], Solov’yov et al. [16] and
Lyalin et al. [17] by less then 10 percent. This discrepancy
is most likely due to the use of local pseudopotentials for
Na and Mg. While previous calculations were either all-
electron [16,17] or else employed non-local pseudopoten-
tials [15], in this work our aim has been to illustrate the
methodology, rather than to obtain accurate values.

Na5 a [a0] b [a0] c [a0] d [a0]
Moullet et al. [15] 6.6 6.4 6.4 6.4
Solov’yov et al. [16] 6.80 6.66 6.73 6.69
this work using [14] 6.587 6.786 6.473 6.389
this work using [13] 6.640 6.805 6.511 6.437

Fig. 3. The figure shows the ion configuration (left panel) and
the electron density (right panel, darker areas correspond to
higher densities) of the equilibrium configuration of a Na5 clus-
ter. The attached table gives, for comparison, the theoretical
bond lengths of Moullet et al. [15] and of Solov’yov et al. [16].

Mg9 a [a0] b [a0] c [a0]
Lyalin et al. [17] 5.792 6.039 5.938
this work 6.308 6.451 6.451

Fig. 4. The figure shows two views of the ground state config-
uration of a Mg9 cluster. The table gives a comparison of our
bond lengths with the calculations of Lyalin et al. [17].

We have also calculated energetic properties like ion-
ization and dissociation energies. The ionization energies
are defined as

V ion
n = E+

n − En. (7)

Figures 5 and 6 demonstrate the reasonable agreement
of our calculations with experimental data compiled by
de Heer [18], and with theoretical calculations including
all-electron calculations by Solov’yov et al. [16] (for Na), as
well as calculations by Lyalin et al. [17], Akola et al. [19],
and Reuse et al. [20] (for Mg). Furthermore we see in
Figure 5 that a significant decrease happens at the transi-
tion of Na2 to Na3 and of Na8 to Na9. This is due to the
closure of the 1s and 1p shell of the delocalized electrons
in Na2 and Na8.

The dissociation energy for the decomposition of a
cluster of size n for the mth dissociation channel, Na(+)

n →
Na(+)

n−m + Nam, is given by

Ediss
m (Na(+)

n ) = E(Na(+)
n )−

[
E(Na(+)

n−m) + E(Nam)
]
. (8)

Figure 7 indicates that most clusters decay by expulsion of
a single Na atom, Only Na5 and Na7 deviate, they dissoci-
ate under the formation of a sodium dimer. Our results for
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Fig. 5. Ionization energies for Nan clusters. Curve labels (a)
and (b) are our calculations, using the pseudopotentials of
references [13,14], respectively. The short-dashed line marked
with stars is from the calculations by Solov’yov [16], and the
dotted line marked with boxes from the compilation of exper-
imental data by de Heer [18].
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Fig. 6. Ionization energies for Mgn clusters. This work has
been based on the local pseudopotentials of reference [13], also
shown are calculations by Lyalin et al. [17], Akola et al. [19],
and Reuse et al. [20] as marked in the figure.
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Fig. 7. Dissociation energies for Na+
n clusters calculated using

the pseudopotentials of references [13,14] as, indicated by the
markers.

the dissociation channels are in essential agreement with
experimental findings of Bréchignac [21] et al.

4 Conclusion

We have described in this paper the first implementation
of a fourth order operator factorization method for solv-
ing the Kohn-Sham equations with non-local pseudopo-
tentials of the Kleinman-Bylander [2] type, which makes
the application of the method for many realistic systems
possible. We also have reported first results from a system-
atic study of Na and Mg clusters and isomers. Compared
to a second order operator factorization, the fourth or-
der method is typically an order of magnitude faster, cf.
Figures 1 and 2.
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